ConnaissancEs Distribuées en Imagerie BiomédicaLE

The NeuroLOG ontology-based approach to federate distributed neurodata stores

Johan Montagnat

CNRS, I3S lab, Modalis team on behalf of the NeuroLOG and the CrEDIBLE consortiums

NeuroInformatics.NL – Data sharing workshop

Amsterdam, December 14, 2012

Multi-centric studies in neurosciences

- Sharing computing resources and algorithms
 - Research (large data sets, statistical studies, models design...)
 - Complex analysis (compute-intensive studies, validation procedures...)

Neuroscience data

- Increasing use of imaging biomarkers for research and diagnosis
- Increasing number of (multi-centric) large-scale studies
 - Publicly available databases
- Distribution of resources over acquisition sites
 - Need to consider existing site-wide legacy environments

Centralized approaches encounter limitations

- Large data volumes to transfer, archive & search
- Data acquisition sites are distributed
 - Need to periodically synchronized with new data acquired
- Sensitive patient data
 - Need to transfer data access control
- Need to adopt uniform data model & format
- Approach: federate existing resources in a distributed, collaborative platform

NeuroLOG middleware

(files, relational DB, semantic)

Distributed computing

NeuroLOG platform

ANR TLOG (2006-2010)

Multi-centric environment for neurosciences

5 neuroscience centers federated

- I3S (Sophia Antipolis) core technical site
- IRISA (INRIA Rennes), collaborating with the University Hospital of Rennes
- IFR49 (INSERM affiliated neuroscience group in Paris La Pitié Salpétrière Hospital)
- GIN (INSERM affiliated neurosciences institute of Grenoble, Michalon Hospital)
- INRIA Sophia Antipolis collaborating with Centre Antoine Lacassagne (Nice)

Neuro-imaging data

Pathologies

- Multiple Sclerosis
- Brain strokes
- Brain tumors
- Alzheimer's

MS

Stroke

Data considered

- Imaging data
 - Various MR modalities (T1, T1 Gado, T2, Flair, Diffusion, PD)
 - Processed images (Registered, Segmented, ...)
- Associated metadata
 - Studies
 - Subjects
 - Data acquisition context and provenance
 - Neurophysiological and Neuroclinical tests
 - Measurements derived from image data

NeuroLOG data mediation & federation

- Preserve legacy environment (e.g. relational databases)
- Cope with heterogenous schemas
 - Use a relational database mediation & federation engine (BusinessObject/SAP DataFederator product)

Semantic reference

- Application ontology OntoNeuroLOG
 - Based on a common modeling framework
 - 3-levels structure
 - one Foundational ontology: i.e. DOLCE
 - Several Core ontologies
 - Several Domain ontologies
- Implemented in OWL-Lite

OntoNeuroLOG

NeuroLOG data mediation & federation

- Experimenting both relational and semantics technologies
 - METAMorphoses conversion of (federated) relational databases into a semantic annotations store

From relational to semantic datastores

CrEDIBLE multi-disciplinary workshop in Sophia Antipolis (Oct. 15-17, 2012)

- Data modeling, data stores, mediation, (distributed) querying, users...
- Semantic models are widely accepted. Existing systems in the biomedical community are mostly centralized. The need for multicentric studies support is unambiguous though.
- Exploiting / reusing data in a multi-disciplinary context is still preliminary, and ontological resources are not sufficient

Approach

- Semantic reference design
- RDF triples-based knowledge bases
 - Semantic alignment for heterogeneous data sources
 - Data sources mapping
- Distributed semantic query engine
 - SPARQL v1.1 compliant

Distributed semantic query engine

Based on KGRAM (Knowledge Graph Abstract Machine)

- Full support of SPARQL v1.1
- Flexible software architecture adaptable to many use cases

Deployment example

- Meta-producer distributes queries over multiple query endpoints
- KGRAM endpoint interfaces with heterogeneous data stores

Results: distributed query processing

Multiple neuroscience data stores querying

 Relational stores (DF), semantic bases (KGRAM) or both (KGRAM)

Performance analysis

- Q1 : costly evaluation (336 remote invocations)
- Q2 : selective query (only 5 resulting datasets)

Query	Relational (SAP DF)	Semantic	Semantic+Relational
Q1	$3.03 \text{ s} \pm 0.25$	$6.13 \text{ s} \pm 0.05$	11.76 s ± 0.05
Q2	1.52 s ± 0.62	$0.60 \text{ s} \pm 0.03$	1.53 s ± 0.14

Semantic extensions

- Ontology
 - Concepts& Rules

Annotations

Processing

Semantic extensions

Semantic extensions

Semantic extensions

Semantic knowledge use in workflows

- Fine-grained annotation traces generated at run-time
- Summary generated by inference rules application
 - Produce relevant and human-tractable experiment summaries

(Some) lessons learned

Data federation feasibility

- Relational data federation requires semantic reference
- Dual relational / semantic data view is confusing for end users
 - Mapping to a semantic, well-documented data model
- Need to cope with site failures
- Data access control is a tough problem

Semantic technologies

- Powerful semantic query and inference engine
 - Trade-off between query language expressivity and performance
- Coupling data and processing semantics
 - Leverage semantic information and infer new knowledge
- Semantic querying and inference capability are foreign to users
 - Non-trivial user interface to be defined to query the federation

Reports & publications available on-line

http://credible.i3s.unice.fr & http://neurolog.i3s.unice.fr

Publications

- O. Corby, A. Gaignard, C. Faron-Zucker, J. Montagnat.
 KGRAM Versatile Inference and Query Engine for the Web of Linked Data
 IEEE/WIC/ACM International Conference on Web Intelligence, Macao, China, Dec. 2012.
- A. Gaignard, J. Montagnat, C. Faron-Zucker, O. Corby.
 Semantic Federation of Distributed Neurodata
 MICCAI Workshop on Data- and Compute-Intensive Clinical and Translational Imaging Applications, pages 41-50, Nice, France, October 2012.
- B. Gibaud, G. Kassel, M. Dojat, B. Batrancourt, F. Michel, A. Gaignard, J. Montagnat
 NeuroLOG: sharing neuroimaging data using an ontology-based federated approach
 AMIA, vol. 2011, pages 472–480, Washington DC, USA, October 2011.
- F. Michel, A. Gaignard, F. Ahmad, C. Barillot, B. Batrancourt, M. Dojat, B. Gibaud, et al.
 Grid-wide neuroimaging data federation in the context of the NeuroLOG project
 HealthGrid'10, pages 112-123, IOS Press, Paris, France, 28-30 June 2010.

Research reports

- CrEDIBLE-12-1-v1: multi-disciplinary workshop report
- CrEDIBLE-12-2-v1: distributed semantic query engines
- CrEDIBLE-12-3-v1: sémantique des données de l'observation

Bonus 1: ready for data sharing?

- Nobody can analyze my data as well as I can / Others will wrongly interpret it / Others can't possibly understand what happened at the recording session
 - Mostly true. This is why we are trying to produce a complete and formally documented data schema
- It adds complexity in my life
 - Definitely true in a short term. You should think of the future now.
- My archive is too big
 - Maybe it is. It is one of the reason why we will not copy it.
- Others will be cited for my work / publish faster than me
 - Didn't you sign it fore research? Didn't know it was competitive?
 - Scientific treachery is not knew and should always be fought.
- My subjects didn't sign for it / My industrial partner doesn't agree
 - Of course only authorized data can be shared

Bonus 1: ready for data sharing?

- Others will try to reproduce my results
 - Hopefully they can! This is likely to become mandatory BTW.
- Nobody will visit my lab to collaborate anymore
 - My bet is the opposite. When others can see / use their data, they will show an interest.

Bonus 2: key issues

- Will inclusion of other institutes' data boost your research?
 - Most probably, as witnessed from many intl data sharing initiatives
- What about loosing your competitive edge?
 - Research is a competition-collaboration arena
- What about patient privacy?
 - This is a though problem that has to be seriously addressed
- What about publications and citations?
 - The sharing policy does not imply wiping all rights out. Open source software developers have been practicing for a long time.
- What about people deriving wrong claims from your data?
 - This will happen, just like some are deriving wrong claims from their own data. In both cases, science is all about stating right facts and arguing against false ones.

Bonus 2: key issues

- Should public money only be spent on Open Access projects?
 - Funding administrations certainly aspire to a rational use of public money
- How to share massive amounts of data?
 - Distribution is the key